Mocking MongoDB in Pytest with Asynchronous Querying

Table of contents

  1. Why Mock MongoDB?
  2. Tools You Need
    1. Basic Setup with Motor and Pytest
    2. Mocking MongoDB with unittest.mock
      1. Step 1: Mock the MongoDB Client
      2. Step 2: Breaking Down the Mocking Process
    3. Testing Asynchronous Queries
      1. Step 3: Using pytest-asyncio
    4. Mocking Multiple Database Queries
    5. Mocking Exceptions
  3. Conclusion

Testing database-related code can be tricky, especially when working with asynchronous operations like those in MongoDB. However, mocking a MongoDB database during tests can help you focus on your logic without depending on the actual database.

In this guide, we’ll cover how to mock MongoDB in pytest with motor, an asynchronous Python driver for MongoDB. We’ll explore mocking the database connection, queries, and testing the results in asynchronous contexts.

Why Mock MongoDB?

When testing a system that interacts with MongoDB, setting up a real database can add complexity to your tests. Mocking the database allows you to:

  • Isolate your test from external dependencies.
  • Simulate different data scenarios.
  • Run tests faster without needing a live database.

Tools You Need

To follow along, make sure you have the following tools in your Python environment:

  • pytest: The testing framework.
  • pytest-asyncio: To handle async tests in pytest.
  • motor: An asynchronous driver for MongoDB.
  • unittest.mock: The standard mocking library.

Here’s how to set it up:

pip install pytest pytest-asyncio motor

Basic Setup with Motor and Pytest

First, let’s create a basic setup where we define an async function to query MongoDB:


from motor.motor_asyncio import AsyncIOMotorClient

async def get_user_data(user_id: str):
    client = AsyncIOMotorClient('mongodb://localhost:27017')
    db = client['mydatabase']
    collection = db['users']
    user_data = await collection.find_one({"_id": user_id})
    return user_data

This function connects to a MongoDB instance, fetches user data by user_id, and returns the result.

Mocking MongoDB with unittest.mock

We want to test get_user_data() without interacting with a real MongoDB instance. For this, we’ll mock the Motor client, the collection, and the query.

Here’s how to do it with pytest.

Step 1: Mock the MongoDB Client

We’ll use unittest.mock.patch to mock the Motor client and its methods. We can patch the AsyncIOMotorClient so that it doesn’t connect to the real MongoDB.

from unittest.mock import patch, AsyncMock

@patch('motor.motor_asyncio.AsyncIOMotorClient')
async def test_get_user_data(mock_client):
    # Mock the database and collection
    mock_db = AsyncMock()
    mock_collection = AsyncMock()
    
    # Set up the mock client
    mock_client.return_value.__getitem__.return_value = mock_db
    mock_db.__getitem__.return_value = mock_collection

    # Mock the find_one() query result
    mock_collection.find_one.return_value = {"_id": "123", "name": "John Doe"}

    # Call the function to test
    result = await get_user_data("123")
    
    # Assertions
    assert result == {"_id": "123", "name": "John Doe"}
    mock_collection.find_one.assert_called_once_with({"_id": "123"})

Step 2: Breaking Down the Mocking Process

  • @patch('motor.motor_asyncio.AsyncIOMotorClient'): This decorator replaces the real AsyncIOMotorClient with a mock version.
  • mock_client.return_value.__getitem__.return_value: This handles accessing the database and collection as you would with a real client. The __getitem__ method is used when accessing databases and collections (e.g., client['mydatabase']).
  • mock_collection.find_one.return_value: Mocks the result of the MongoDB query.
  • mock_collection.find_one.assert_called_once_with({"_id": "123"}): Ensures the query is called with the correct parameters.

Testing Asynchronous Queries

When testing asynchronous functions, it’s important to use pytest-asyncio. This allows pytest to handle await statements within the test function. Here’s a step-by-step breakdown of how it works:

Step 3: Using pytest-asyncio

import pytest

@pytest.mark.asyncio
@patch('motor.motor_asyncio.AsyncIOMotorClient')
async def test_get_user_data(mock_client):
    mock_db = AsyncMock()
    mock_collection = AsyncMock()
    
    mock_client.return_value.__getitem__.return_value = mock_db
    mock_db.__getitem__.return_value = mock_collection

    mock_collection.find_one.return_value = {"_id": "123", "name": "John Doe"}

    result = await get_user_data("123")
    
    assert result == {"_id": "123", "name": "John Doe"}

The key to this test is @pytest.mark.asyncio, which tells pytest to run the function asynchronously. Without this decorator, the await statement would raise an error.

Mocking Multiple Database Queries

Sometimes, your function may execute more than one query. In this case, you can mock each query separately:

async def get_full_user_data(user_id: str):
    client = AsyncIOMotorClient('mongodb://localhost:27017')
    db = client['mydatabase']
    collection = db['users']
    user_data = await collection.find_one({"_id": user_id})
    user_profile = await collection.find_one({"user_id": user_id, "type": "profile"})
    return user_data, user_profile

To test this, mock both find_one() queries:

@patch('motor.motor_asyncio.AsyncIOMotorClient')
async def test_get_full_user_data(mock_client):
    mock_db = AsyncMock()
    mock_collection = AsyncMock()

    mock_client.return_value.__getitem__.return_value = mock_db
    mock_db.__getitem__.return_value = mock_collection

    # Mock multiple queries
    mock_collection.find_one.side_effect = [
        {"_id": "123", "name": "John Doe"},
        {"user_id": "123", "type": "profile", "bio": "Software Engineer"}
    ]

    result = await get_full_user_data("123")
    
    assert result == (
        {"_id": "123", "name": "John Doe"},
        {"user_id": "123", "type": "profile", "bio": "Software Engineer"}
    )

Here, mock_collection.find_one.side_effect allows us to return different results for each query call.

Mocking Exceptions

Sometimes, you need to test how your function behaves when an exception occurs during a database query. You can use side_effect to simulate exceptions.

@patch('motor.motor_asyncio.AsyncIOMotorClient')
async def test_get_user_data_raises_exception(mock_client):
    mock_db = AsyncMock()
    mock_collection = AsyncMock()

    mock_client.return_value.__getitem__.return_value = mock_db
    mock_db.__getitem__.return_value = mock_collection

    # Simulate an exception on find_one
    mock_collection.find_one.side_effect = Exception("Database error")

    with pytest.raises(Exception, match="Database error"):
        await get_user_data("123")

This test verifies that your function handles exceptions correctly when a MongoDB query fails.


Conclusion

Mocking MongoDB with pytest for asynchronous operations ensures your tests are fast, isolated, and reliable. By using tools like unittest.mock and pytest-asyncio, you can efficiently test your MongoDB-dependent code without needing a live database. This approach lets you focus on testing the core logic of your functions while keeping your tests clean and predictable.